organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[(5-Bromo-2-hydroxybenzylidene)amino]-N-(4,6-dimethylpyrimidin-2yl)benzenesulfonamide-4-bromo-2-[(E)-({4-[(4,6-dimethylpyrimidin-2-yl)sulfamovl]phenvl}iminio)methvl]phenolate [0.61 (7)/0.39 (7)]

Hazoor A. Shad,^a M. Nawaz Tahir^{b*} and Zahid H. **Chohan**^a

^aDepartment of Chemistry, Bahauddin Zakariya University, Multan-60800, Pakistan, and ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 18 July 2008; accepted 6 December 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.048; wR factor = 0.131; data-to-parameter ratio = 13.3.

The title compound, $0.61C_{19}H_{17}BrN_4O_3S \cdot 0.39C_{19}H_{17}BrN_4O_3S$, is a Schiff base derived from 5-bromosalicylaldehyde and 4-amino-N-(4,6-dimethyl-2-pyrimidinyl)benzenesulfonamide-(sulfamethazine) and is isostructural with its chloro analogue. The geometry of the title molecule points to the enol (OH-C = C - C = N) form as the major tautomer, however two electron-density maxima corresponding to the H atoms of the OH and NH groups, found in the region of a strong intramolecular N···H···O hydrogen bond, do not allow the elimination of the presence of the zwitterionic $(O^--C=C)$ C=NH⁺) form in the crystal. Refinement of the occupancies of these H atoms gave a 0.61 (7):0.39 (7) ratio of the enolic and zwitterionic forms. The two benzene rings within the molecule are nearly coplanar and the central benzene ring forms a dihedral angle of 84.1 $(1)^{\circ}$ with the pyrimidine fragment. An intermolecular N-H···O hydrogen bond links molecules into chains extended along the a axis and a C- $H \cdots O$ link is also present. The H atoms of one of the methyl groups are disordered over two sites with an occupancy ratio of 0.72 (7):0.28 (7).

Related literature

For the crystal structures of similar sulphonamides, see: Chohan et al. (2008a,b); Shad et al. (2008); Tahir et al. (2008).

 $V = 3880.5 (5) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 2.26 \text{ mm}^{-1}$

 $0.20 \times 0.16 \times 0.14 \text{ mm}$

19597 measured reflections

3428 independent reflections

1961 reflections with $I > 2\sigma(I)$

T = 296 (2) K

 $R_{\rm int} = 0.081$

Z = 8

Experimental

Crystal data

0.61C₁₉H₁₇BrN₄O₃S--0.39C19H17BrN4O3S $M_r = 461.34$ Orthorhombic, Phca a = 11.7919 (9) Å b = 13.9965 (8) Å c = 23.5117 (17) Å

Data collection

Bruker KAPPA APEXII CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2005)	
$T_{\min} = 0.650, T_{\max} = 0.725$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	257 parameters
$wR(F^2) = 0.131$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
3428 reflections	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1N···O1	1.06	1.73	2.530 (5)	129
$O1-H1O\cdots N1$	0.86	1.94	2.530 (5)	124
$N2-H2N\cdotsO1^{i}$	0.86	2.20	2.871 (4)	135
$C9-H9\cdots O2^{ii}$	0.93	2.50	3.417 (5)	169

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2160).

References

Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.

- Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008a). Acta Cryst. E64, 0725.
- Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008b). Acta Cryst. E64, 0648.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, 0635.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, 0720.

Acta Cryst. (2009). E65, 098-099 [doi:10.1107/S1600536808041214]

4-[(5-Bromo-2-hydroxybenzylidene)amino]-*N*-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide-4bromo-2-[(*E*)-({4-[(4,6-dimethylpyrimidin-2-yl)sulfamoyl]phenyl}iminio)methyl]phenolate [0.61 (7)/0.39 (7)]

H. A. Shad, M. N. Tahir and Z. H. Chohan

Comment

As a result of vital pharmacological effects of sulfonamide and their derivatives, there is a rising attention in synthesizing and biotesting of these derivatives. In the vision of the versatile biological chemistry of sulfonamides, we have synthesized and recently published the crystal structures of several compounds from this group (Chohan *et al.*, 2008*a*, 2008*b*; Shad *et al.*, 2008; Tahir *et al.*, 2008). In the same continuation, we herein report the structure of the title compound.

The title compound (I) (Fig. 1) was prepared from sulfamethazine and 5-bromosalicylaldehyde. The crystal of the title compound is isostructural with 4-(5-chloro-2-hydroxybenzylideneamino)-*N*-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (II) (Chohan *et al.*, 2008*b*). In the crystal two tautomers, enolic and zwitterionic, with an approximate ratio of 3:2 coexists, as shown by the refinement of H atom occupancies from the N-H and O-H groups.

We shall restrict discussion to comparison of the bond geometry between (I) and (II). The longest bond in the molecule is C3—Br1, having bond distance 1.890 (5) Å. The bond distances in (I), S1—N2 [1.629 (4) Å] and S1—C11 [1.753 (4) Å] remain equal within experimental errors with those observed in (II). The range of S—O [1.416 (3)–1.431 (3) Å] bond lengths is increased compared to 1.422 (2)–1.4282 (19) Å in (II). The bond angles around the S1-atom are slightly changed. The geometry of intramolecular as well as intermolecular H-bonding is given in Table 1 and shown in Fig 2.

Experimental

Sulfamethazine (0.5566 g, 2 mmol) in ethanol (15 ml) was reacted with ethanolic (10 ml) solution of 5-bromosalicylaldehyde (0.4020 g, 2 mmol). The mixture was refluxed for 3 h. The colour of the solution gradually changed from colourless to orange-red. The solution was then cooled to room temperature, filtered and volume reduced to about one-third on rotary evaporator. After 12 days crystals of the title compound were obtained.

Refinement

The positions of H-atoms attached to O1 and N1 were determined from the difference Fourier synthesis and in the refinement these atoms were constrained to ride on their parent atoms. Their occupancy factors were allowed to refine with the the sum of the occupancy factors constrained to 1.00. Remaining H-atoms were positioned geometrically, with C—H = 0.93-0.96 Å. The $U_{iso}(H) = xU_{eq}(C, N, O)$, where x = 1.5 for methyl H, H1N, H1O and x = 1.2 for all other H atoms. The H-atoms of one of the methyl groups are disordered over two sites with occupancy ratio of 72:28.

Figures

Fig. 1. Molecular structure of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The H atoms bonded to O1 and N1 show partial occupancy.

Fig. 2. Crystal packing of the title compound.

Crystal data

 $D_{\rm x} = 1.579 \ {\rm Mg \ m^{-3}}$ $0.61C_{19}H_{17}BrN_4O_3S{\cdot}0.39C_{19}H_{17}BrN_4O_3S$ $M_r = 461.34$ Melting point: 497 K Mo Kα radiation Orthorhombic, Pbca $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ac 2ab Cell parameters from 3428 reflections $\theta = 2.4 - 25.0^{\circ}$ a = 11.7919 (9) Å b = 13.9965 (8) Å $\mu = 2.26 \text{ mm}^{-1}$ c = 23.5117 (17) Å T = 296 (2) K $V = 3880.5 (5) \text{ Å}^3$ Prismatic, red Z = 8 $0.20 \times 0.16 \times 0.14 \text{ mm}$ $F_{000} = 1872$

Data collection

Bruker KAPPA APEXII CCD diffractometer	3428 independent reflections
Radiation source: fine-focus sealed tube	1961 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.081$
Detector resolution: 7.9 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 296(2) K	$\theta_{\min} = 2.4^{\circ}$
ω scans	$h = -14 \rightarrow 14$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -16 \rightarrow 16$
$T_{\min} = 0.650, T_{\max} = 0.725$	$l = -27 \rightarrow 26$
19597 measured reflections	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.131$	$w = 1/[\sigma^2(F_o^2) + (0.057P)^2 + 2.1678P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.001$
3428 reflections	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
257 parameters	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Br1	1.18229 (5)	0.76268 (4)	0.36991 (3)	0.0824 (3)	
S1	0.40502 (9)	0.37094 (8)	0.60341 (5)	0.0417 (3)	
01	0.9535 (3)	0.3837 (2)	0.39965 (16)	0.0716 (11)	
H1O	0.9124	0.3692	0.4287	0.086*	0.61 (7)
N1	0.8172 (3)	0.4593 (3)	0.46953 (16)	0.0426 (9)	
H1N	0.8601	0.3968	0.4558	0.051*	0.39 (7)
02	0.3377 (3)	0.3110 (2)	0.56749 (13)	0.0560 (9)	
O3	0.3565 (2)	0.4558 (2)	0.62541 (13)	0.0511 (8)	
N2	0.4430 (3)	0.2997 (2)	0.65478 (15)	0.0452 (10)	
H2N	0.4177	0.2421	0.6535	0.068*	
N3	0.5374 (3)	0.2497 (3)	0.73414 (17)	0.0472 (10)	
N4	0.5447 (3)	0.4138 (2)	0.70529 (16)	0.0458 (9)	
C1	0.9643 (4)	0.5482 (3)	0.42496 (19)	0.0440 (11)	
C2	1.0200 (4)	0.6363 (3)	0.4176 (2)	0.0493 (12)	
H2	0.9966	0.6894	0.4383	0.059*	
C3	1.1079 (4)	0.6443 (3)	0.3803 (2)	0.0538 (13)	
C4	1.1447 (4)	0.5657 (4)	0.3499 (2)	0.0661 (15)	
H4	1.2054	0.5716	0.3249	0.079*	
C5	1.0922 (4)	0.4790 (4)	0.3565 (2)	0.0685 (16)	
Н5	1.1168	0.4269	0.3352	0.082*	
C6	1.0036 (4)	0.4677 (3)	0.3942 (2)	0.0532 (13)	
C7	0.8679 (4)	0.5393 (3)	0.46274 (19)	0.0450 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H7	0.8424	0.5927	0.4824	0.054*	
C8	0.7198 (3)	0.4440 (3)	0.50347 (18)	0.0375 (10)	
C9	0.6759 (4)	0.3538 (3)	0.5027 (2)	0.0538 (13)	
Н9	0.7107	0.3067	0.4809	0.065*	
C10	0.5808 (4)	0.3317 (3)	0.5338 (2)	0.0548 (13)	
H10	0.5514	0.2701	0.5329	0.066*	
C11	0.5290 (3)	0.4005 (3)	0.56628 (17)	0.0359 (10)	
C12	0.5738 (4)	0.4917 (3)	0.56843 (19)	0.0430 (11)	
H12	0.5405	0.5382	0.5912	0.052*	
C13	0.6683 (4)	0.5127 (3)	0.5365 (2)	0.0457 (12)	
H13	0.6979	0.5743	0.5372	0.055*	
C14	0.5124 (3)	0.3231 (3)	0.70054 (19)	0.0417 (11)	
C15	0.6020 (4)	0.2704 (3)	0.7790 (2)	0.0523 (13)	
C16	0.6396 (4)	0.3624 (4)	0.7881 (2)	0.0579 (13)	
H16	0.6850	0.3764	0.8193	0.069*	
C17	0.6095 (4)	0.4328 (3)	0.7507 (2)	0.0501 (12)	
C18	0.6482 (5)	0.5342 (4)	0.7575 (3)	0.0784 (17)	
H18A	0.6846	0.5550	0.7231	0.118*	
H18B	0.7009	0.5382	0.7885	0.118*	
H18C	0.5840	0.5743	0.7652	0.118*	
C19	0.6307 (5)	0.1897 (4)	0.8188 (2)	0.0797 (18)	
H19A	0.5973	0.1316	0.8050	0.120*	0.72 (7)
H19B	0.6015	0.2036	0.8560	0.120*	0.72 (7)
H19C	0.7115	0.1824	0.8208	0.120*	0.72 (7)
H19D	0.6762	0.2134	0.8495	0.120*	0.28 (7)
H19E	0.6720	0.1414	0.7985	0.120*	0.28 (7)
H19F	0.5620	0.1626	0.8337	0.120*	0.28 (7)

Atomic displacement parameters (\AA^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0841 (5)	0.0587 (4)	0.1044 (6)	-0.0198 (3)	0.0112 (4)	0.0058 (3)
0.0396 (6)	0.0417 (6)	0.0437 (7)	-0.0038 (5)	-0.0033 (5)	0.0005 (6)
0.086 (3)	0.0396 (19)	0.089 (3)	-0.0101 (18)	0.039 (2)	-0.0107 (19)
0.044 (2)	0.043 (2)	0.041 (2)	0.0041 (18)	0.0030 (19)	0.0006 (18)
0.053 (2)	0.060 (2)	0.056 (2)	-0.0146 (16)	-0.0152 (17)	-0.0017 (17)
0.0480 (18)	0.0495 (19)	0.056 (2)	0.0038 (15)	0.0073 (16)	-0.0015 (16)
0.055 (2)	0.039 (2)	0.042 (2)	-0.0141 (18)	-0.010 (2)	0.0017 (18)
0.047 (2)	0.051 (2)	0.043 (3)	0.0018 (18)	-0.003 (2)	0.000 (2)
0.050 (2)	0.046 (2)	0.042 (3)	-0.0097 (18)	0.001 (2)	-0.0051 (19)
0.042 (3)	0.049 (3)	0.041 (3)	0.005 (2)	-0.006 (2)	0.000 (2)
0.056 (3)	0.038 (3)	0.054 (3)	0.002 (2)	-0.003 (3)	-0.003 (2)
0.043 (3)	0.052 (3)	0.066 (4)	-0.003 (2)	0.002 (3)	0.006 (3)
0.053 (3)	0.060 (3)	0.086 (4)	0.002 (3)	0.028 (3)	-0.002 (3)
0.063 (3)	0.052 (3)	0.091 (5)	0.001 (3)	0.031 (3)	-0.010 (3)
0.056 (3)	0.041 (3)	0.063 (4)	0.003 (2)	0.008 (3)	-0.003 (3)
0.051 (3)	0.041 (3)	0.044 (3)	0.010 (2)	0.000 (2)	-0.002 (2)
0.037 (2)	0.043 (3)	0.033 (3)	0.004 (2)	0.002 (2)	0.001 (2)
	U^{11} 0.0841 (5) 0.0396 (6) 0.086 (3) 0.044 (2) 0.053 (2) 0.0480 (18) 0.055 (2) 0.047 (2) 0.047 (2) 0.042 (3) 0.056 (3) 0.043 (3) 0.053 (3) 0.056 (3) 0.056 (3) 0.051 (3) 0.037 (2)	U^{11} U^{22} $0.0841 (5)$ $0.0587 (4)$ $0.0396 (6)$ $0.0417 (6)$ $0.086 (3)$ $0.0396 (19)$ $0.044 (2)$ $0.043 (2)$ $0.053 (2)$ $0.060 (2)$ $0.0480 (18)$ $0.0495 (19)$ $0.055 (2)$ $0.039 (2)$ $0.047 (2)$ $0.051 (2)$ $0.042 (3)$ $0.049 (3)$ $0.056 (3)$ $0.038 (3)$ $0.053 (3)$ $0.052 (3)$ $0.056 (3)$ $0.041 (3)$ $0.056 (3)$ $0.041 (3)$ $0.051 (3)$ $0.041 (3)$	U^{11} U^{22} U^{33} $0.0841 (5)$ $0.0587 (4)$ $0.1044 (6)$ $0.0396 (6)$ $0.0417 (6)$ $0.0437 (7)$ $0.086 (3)$ $0.0396 (19)$ $0.089 (3)$ $0.044 (2)$ $0.043 (2)$ $0.041 (2)$ $0.053 (2)$ $0.060 (2)$ $0.056 (2)$ $0.0480 (18)$ $0.0495 (19)$ $0.056 (2)$ $0.047 (2)$ $0.051 (2)$ $0.042 (2)$ $0.047 (2)$ $0.051 (2)$ $0.042 (3)$ $0.050 (2)$ $0.046 (2)$ $0.042 (3)$ $0.042 (3)$ $0.049 (3)$ $0.041 (3)$ $0.056 (3)$ $0.038 (3)$ $0.054 (3)$ $0.043 (3)$ $0.052 (3)$ $0.066 (4)$ $0.053 (3)$ $0.052 (3)$ $0.091 (5)$ $0.056 (3)$ $0.041 (3)$ $0.063 (4)$ $0.051 (3)$ $0.041 (3)$ $0.044 (3)$ $0.051 (3)$ $0.043 (3)$ $0.033 (3)$	U^{11} U^{22} U^{33} U^{12} 0.0841 (5)0.0587 (4)0.1044 (6) $-0.0198 (3)$ 0.0396 (6)0.0417 (6)0.0437 (7) $-0.0038 (5)$ 0.086 (3)0.0396 (19)0.089 (3) $-0.0101 (18)$ 0.044 (2)0.043 (2)0.041 (2)0.0041 (18)0.053 (2)0.060 (2)0.056 (2) $-0.0146 (16)$ 0.0480 (18)0.0495 (19)0.056 (2) $0.0038 (15)$ 0.055 (2)0.039 (2)0.042 (2) $-0.0141 (18)$ 0.047 (2)0.051 (2) $0.043 (3)$ $0.0018 (18)$ 0.050 (2)0.046 (2) $0.042 (3)$ $-0.0097 (18)$ 0.042 (3) $0.049 (3)$ $0.041 (3)$ $0.002 (2)$ 0.056 (3) $0.038 (3)$ $0.054 (3)$ $0.002 (2)$ 0.043 (3) $0.052 (3)$ $0.066 (4)$ $-0.003 (2)$ 0.053 (3) $0.052 (3)$ $0.091 (5)$ $0.001 (3)$ $0.056 (3)$ $0.041 (3)$ $0.063 (4)$ $0.003 (2)$ $0.053 (3)$ $0.041 (3)$ $0.044 (3)$ $0.010 (2)$ $0.051 (3)$ $0.041 (3)$ $0.044 (3)$ $0.010 (2)$ $0.057 (2)$ $0.043 (3)$ $0.033 (3)$ $0.004 (2)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0841 (5)0.0587 (4)0.1044 (6) $-0.0198 (3)$ 0.0112 (4)0.0396 (6)0.0417 (6)0.0437 (7) $-0.0038 (5)$ $-0.0033 (5)$ 0.086 (3)0.0396 (19)0.089 (3) $-0.0101 (18)$ 0.039 (2)0.044 (2)0.043 (2)0.041 (2)0.0041 (18)0.0030 (19)0.053 (2)0.060 (2)0.056 (2) $-0.0146 (16)$ $-0.0152 (17)$ 0.0480 (18)0.0495 (19)0.056 (2) $-0.0146 (16)$ $-0.010 (2)$ 0.055 (2)0.039 (2)0.042 (2) $-0.0141 (18)$ $-0.003 (2)$ 0.047 (2)0.051 (2)0.043 (3)0.0018 (18) $-0.003 (2)$ 0.050 (2)0.046 (2)0.042 (3) $-0.0077 (18)$ 0.001 (2)0.042 (3)0.049 (3)0.041 (3)0.002 (2) $-0.003 (3)$ 0.056 (3)0.038 (3)0.054 (3)0.002 (2) $-0.003 (3)$ 0.053 (3)0.060 (3)0.086 (4) $-0.003 (2)$ $0.028 (3)$ 0.053 (3)0.052 (3)0.091 (5)0.001 (3) $0.031 (3)$ 0.053 (3)0.041 (3)0.063 (4)0.003 (2) $0.008 (3)$ 0.056 (3)0.041 (3)0.063 (4)0.003 (2) $0.008 (3)$ 0.056 (3)0.041 (3)0.044 (3)0.010 (2) $0.000 (2)$ 0.051 (3)0.041 (3)0.033 (3)0.004 (2) $0.002 (2)$

C9	0.060 (3)	0.044 (3)	0.058 (3)	0.002 (2)	0.016 (3)	-0.013 (2)
C10	0.059 (3)	0.038 (3)	0.067 (4)	-0.006 (2)	0.011 (3)	-0.011 (2)
C11	0.040 (2)	0.034 (2)	0.034 (3)	0.0019 (19)	-0.004 (2)	-0.0028 (19)
C12	0.050 (3)	0.039 (3)	0.040 (3)	0.005 (2)	0.008 (2)	-0.007 (2)
C13	0.050 (3)	0.035 (2)	0.052 (3)	-0.004 (2)	0.006 (2)	-0.006 (2)
C14	0.041 (3)	0.048 (3)	0.036 (3)	-0.002 (2)	0.004 (2)	-0.001 (2)
C15	0.054 (3)	0.057 (3)	0.046 (3)	0.016 (3)	0.007 (3)	-0.003 (3)
C16	0.046 (3)	0.082 (4)	0.046 (3)	0.008 (3)	-0.009 (2)	-0.016 (3)
C17	0.043 (3)	0.061 (3)	0.046 (3)	-0.005 (2)	0.005 (2)	-0.012 (3)
C18	0.085 (4)	0.070 (4)	0.081 (5)	-0.031 (3)	-0.002 (3)	-0.020 (3)
C19	0.095 (4)	0.083 (4)	0.061 (4)	0.035 (3)	-0.016 (3)	0.002 (3)

Geometric parameters (Å, °)

Br1—C3	1.890 (5)	С7—Н7	0.9300
S1—O3	1.416 (3)	C8—C9	1.365 (6)
S1—O2	1.431 (3)	C8—C13	1.378 (6)
S1—N2	1.629 (4)	C9—C10	1.374 (6)
S1—C11	1.753 (4)	С9—Н9	0.9300
O1—C6	1.322 (5)	C10—C11	1.372 (6)
01—H10	0.8621	C10—H10	0.9300
N1—C7	1.279 (5)	C11—C12	1.381 (5)
N1—C8	1.414 (5)	C12—C13	1.375 (6)
N1—H1N	1.0611	C12—H12	0.9300
N2	1.391 (5)	С13—Н13	0.9300
N2—H2N	0.8600	C15—C16	1.378 (6)
N3—C14	1.329 (5)	C15—C19	1.506 (7)
N3—C15	1.332 (6)	C16—C17	1.368 (6)
N4—C14	1.330 (5)	С16—Н16	0.9300
N4—C17	1.339 (6)	C17—C18	1.499 (6)
C1—C2	1.408 (6)	C18—H18A	0.9600
C1—C6	1.416 (6)	C18—H18B	0.9600
C1—C7	1.448 (6)	C18—H18C	0.9600
C2—C3	1.362 (6)	С19—Н19А	0.9600
С2—Н2	0.9300	С19—Н19В	0.9600
C3—C4	1.382 (7)	С19—Н19С	0.9600
C4—C5	1.371 (6)	C19—H19D	0.9600
C4—H4	0.9300	С19—Н19Е	0.9600
C5—C6	1.380 (7)	C19—H19F	0.9600
С5—Н5	0.9300		
O3—S1—O2	118.9 (2)	C11—C10—C9	120.1 (4)
O3—S1—N2	110.7 (2)	C11-C10-H10	120.0
O2—S1—N2	103.37 (18)	С9—С10—Н10	120.0
O3—S1—C11	108.73 (19)	C10-C11-C12	119.9 (4)
O2—S1—C11	107.90 (19)	C10-C11-S1	118.8 (3)
N2—S1—C11	106.54 (18)	C12-C11-S1	121.3 (3)
С6—О1—Н1О	122.5	C13—C12—C11	119.2 (4)
C7—N1—C8	125.7 (4)	C13—C12—H12	120.4
C7—N1—H1N	117.4	C11—C12—H12	120.4

C8—N1—H1N	115.7	C12—C13—C8	121.0 (4)
C14—N2—S1	126.3 (3)	C12—C13—H13	119.5
C14—N2—H2N	116.9	C8—C13—H13	119.5
S1—N2—H2N	116.9	N3—C14—N4	128.6 (4)
C14—N3—C15	115.4 (4)	N3—C14—N2	114.1 (4)
C14—N4—C17	114.8 (4)	N4—C14—N2	117.2 (4)
C2—C1—C6	118.8 (4)	N3—C15—C16	120.7 (5)
C2—C1—C7	121.1 (4)	N3—C15—C19	117.2 (5)
C6—C1—C7	120.1 (4)	C16—C15—C19	122.2 (5)
C3—C2—C1	120.4 (4)	C17—C16—C15	119.3 (5)
С3—С2—Н2	119.8	С17—С16—Н16	120.3
C1—C2—H2	119.8	С15—С16—Н16	120.3
C2—C3—C4	120.4 (4)	N4—C17—C16	121.1 (4)
C2—C3—Br1	120.6 (4)	N4—C17—C18	116.6 (5)
C4—C3—Br1	119.0 (4)	C16—C17—C18	122.3 (5)
C5—C4—C3	120.3 (5)	C17—C18—H18A	109.5
C5—C4—H4	119.8	C17—C18—H18B	109.5
С3—С4—Н4	119.8	H18A—C18—H18B	109.5
C4—C5—C6	121.1 (5)	C17—C18—H18C	109.5
С4—С5—Н5	119.5	H18A—C18—H18C	109.5
С6—С5—Н5	119.5	H18B—C18—H18C	109.5
O1—C6—C5	120.2 (4)	C15—C19—H19A	109.5
O1—C6—C1	120.8 (4)	C15—C19—H19B	109.5
C5—C6—C1	119.0 (4)	H19A—C19—H19B	109.5
N1—C7—C1	121.3 (4)	С15—С19—Н19С	109.5
N1—C7—H7	119.4	H19A—C19—H19C	109.5
С1—С7—Н7	119.4	H19B—C19—H19C	109.5
C9—C8—C13	119.1 (4)	C15—C19—H19D	109.5
C9—C8—N1	116.2 (4)	С15—С19—Н19Е	109.5
C13—C8—N1	124.7 (4)	H19D—C19—H19E	109.5
C8—C9—C10	120.7 (4)	C15—C19—H19F	109.5
С8—С9—Н9	119.6	H19D—C19—H19F	109.5
С10—С9—Н9	119.6	H19E—C19—H19F	109.5
O3—S1—N2—C14	-53.3 (4)	O3—S1—C11—C10	-169.9 (4)
O2—S1—N2—C14	178.3 (4)	O2—S1—C11—C10	-39.7 (4)
C11—S1—N2—C14	64.7 (4)	N2—S1—C11—C10	70.8 (4)
C6—C1—C2—C3	1.9 (7)	O3—S1—C11—C12	9.0 (4)
C7—C1—C2—C3	-177.5 (4)	O2—S1—C11—C12	139.2 (3)
C1—C2—C3—C4	-1.1 (7)	N2—S1—C11—C12	-110.4 (4)
C1—C2—C3—Br1	179.6 (3)	C10-C11-C12-C13	1.9 (7)
C2—C3—C4—C5	0.8 (8)	S1-C11-C12-C13	-177.0 (3)
Br1—C3—C4—C5	-179.9 (4)	C11—C12—C13—C8	-1.3 (7)
C3—C4—C5—C6	-1.4 (9)	C9—C8—C13—C12	-0.1 (7)
C4—C5—C6—O1	179.4 (5)	N1—C8—C13—C12	-179.8 (4)
C4—C5—C6—C1	2.2 (8)	C15—N3—C14—N4	1.1 (7)
C2—C1—C6—O1	-179.6 (4)	C15—N3—C14—N2	-178.7 (4)
C7—C1—C6—O1	-0.2 (7)	C17—N4—C14—N3	-1.1 (7)
C2—C1—C6—C5	-2.4 (7)	C17—N4—C14—N2	178.7 (4)
C7—C1—C6—C5	177.0 (5)	S1—N2—C14—N3	-175.0 (3)

C8—N1—C7—C1	-177.3 (4)	S1—N2—C14—N4	5.2 (6)
C2-C1-C7-N1	180.0 (4)	C14—N3—C15—C16	-0.7 (6)
C6—C1—C7—N1	0.6 (7)	C14—N3—C15—C19	179.0 (4)
C7—N1—C8—C9	177.0 (4)	N3-C15-C16-C17	0.4 (7)
C7—N1—C8—C13	-3.2 (7)	C19—C15—C16—C17	-179.3 (5)
C13—C8—C9—C10	0.8 (7)	C14—N4—C17—C16	0.7 (6)
N1—C8—C9—C10	-179.4 (4)	C14—N4—C17—C18	179.7 (4)
C8—C9—C10—C11	-0.3 (7)	C15-C16-C17-N4	-0.4 (7)
C9—C10—C11—C12	-1.1 (7)	C15—C16—C17—C18	-179.4 (5)
C9-C10-C11-S1	177.8 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D {\longrightarrow} \mathbf{H} {\cdots} A$
N1—H1N···O1	1.06	1.73	2.530 (5)	129
01—H1O…N1	0.86	1.94	2.530 (5)	124
N2—H2N···O1 ⁱ	0.86	2.20	2.871 (4)	135
C9—H9····O2 ⁱⁱ	0.93	2.50	3.417 (5)	169

Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) x+1/2, -y+1/2, -z+1.

Fig. 1

Fig. 2